
Changing shared buffers on
the fly

Presented by: Ashutosh Bapat

Patch authors: Dmitry Dolgov, Ashutosh Bapat

@PGConf.dev 2025

Motivation

The size of shared buffers is controlled by GUC shared_buffers

Change needs a restart, affects

High availability

Ability to auto-scale in response to changing working set

Optimal memory usage

Ability to use auto-tuning tools

Status quo

Let there be a Postmaster … and there was a Postmaster

Postmaster

Process Memory

Data segment

Shared memory (mapped)

Stack

BufferDescPadded *BufferDescriptors
char *BufferBlocks

CVMinimallyPadded *BufferIOCVArray
CkptSortItem *CkptBufferIds

Heap

Shared memory segment

Shmem index
…

“Buffer Descriptors”
“Buffer Blocks”

“Buffer IO Condition Variables”
“Checkpoint BufferIds”

…

…

Buffer Descriptors

Buffer blocks

Buffer IO condition variables

Checkpoint bufferids

…

Backends and workers … it created in its own image

Shared memory segment

Shmem index
…

“Buffer Descriptors”
“Buffer Blocks”

“Buffer IO Condition Variables”
“Checkpoint BufferIds”

…

…

Buffer Descriptors

Buffer blocks

Buffer IO condition variables

Checkpoint bufferids

…

Postmaster

Process Memory

Data segment

Shared memory
(mapped)

Stack

Heap

BufferDescPadded *BufferDescriptors

char *BufferBlocks

CVMinimallyPadded *BufferIOCVArray

CkptSortItem *CkptBufferIds

Backend/worker

Process Memory

Data segment

Shared memory
(mapped)

Stack

Heap

BufferDescPadded *BufferDescriptors

char *BufferBlocks

CVMinimallyPadded *BufferIOCVArray

CkptSortItem *CkptBufferIds

pg_shmem_allocation
#select name, off, pg_size_pretty(size) size, pg_size_pretty(allocated_size) allocated_size from pg_shmem_allocations where name ilike '%buffer%' order
by off;

 name | off | size | allocated_size

---------------------------------+-----------+------------+----------------

 Buffer Descriptors | 5737088 | 1024 kB | 1024 kB

 Buffer Blocks | 6785664 | 128 MB | 128 MB

 Buffer IO Condition Variables | 141007488 | 256 kB | 256 kB

 Checkpoint BufferIds | 141269632 | 320 kB | 320 kB

 Shared Buffer Lookup Table | 141597312 | 2896 bytes | 2944 bytes

 Buffer Strategy Status | 142525952 | 28 bytes | 128 bytes

 Backend Application Name Buffer | 147436544 | 11 kB | 11 kB

 Backend Client Host Name Buffer | 147447680 | 11 kB | 11 kB

 Backend Activity Buffer | 147458816 | 174 kB | 174 kB

 shmInvalBuffer | 147649152 | 67 kB | 68 kB

(10 rows)

Buffer manager - shared memory structures
BufferDescPadded *BufferDescriptors

page tag,
state,

buf_id = 0
buf_id = 1 buf_id = 2 buf_id = 3 … buf_id =

NBuffers - 1

char *BufferBlocks

BLCKSZ BLCKSZ BLCKSZ BLCKSZ … BLCKSZ

BufferGetBlock(BufferDescriptorGetBuffer(bufdesc)) = BufferBlocks + ((Size) (bufdesc->buf_id + 1 - 1)) * BLCKSZ

ConditionVariableMinimallyPadded *BufferIOCVArray

cv0 cv1 cv2 cv3 …
cv for buffer
with buf_id =
NBuffers - 1

BufferIOCVArray[bufdesc->buf_id]

Buffer manager - buffer lookup table

BufferTag {
 tablespace Oid
 database Oid
 relation file number
 fork number
 block number}

0

1

NBuffers +
NUM_BUFFER
_PARTITIONS

buf_id

Problems in resizing shared memory structures

Resizing one structure changes start address of the following structures

Changed addresses need to be “sync’ed” in each backend

Requires moving all the data following resized structure (MySQL does it)

Affects subsystems other than buffer manager

Extensions need to cope with it

Pointer instability

Proposed solution

Uses separate shared memory segments

Avoid moving shared memory structures

Maintains pointer stability

Separate shared memory mapped segments

Main shared memory
Shmem index

…

…

…

…

Buffer Descriptors
segment

Buffer blocks segment

Buffer IO CV segment

Checkpoint bufferids
segment

Buffer lookup table
segment

Shared memory segment

Reserved

address

map

Allocated memory

Address space for future expansion

Pure mmap approach

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

mmap (PROT_WRITE
| PROT_READ)

+

memory initialization

mmap (PROT_NONE,
MAP_NORESERVE)

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

Memory allocation: mmap with PROT_WRITE | PROT_READ + memory initialization

Address space reservation: mmap PROT_NONE, MAP_NORESERVE

Resizing

Unmap reserved memory

Remap allocated memory

Map reserved memory

Problem

mremap does not support expansion with MAP_HUGETBL

Space management: Pure mmap approach

Mmap + anonymous file

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

Anonymous
backing file

Unallocated
memory
blocking

address space

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

Anonymous
backing file

Unallocated
memory
blocking
address
space

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

Anonymous
backing file

Unallocated
memory
blocking

address space

Space management: Anonymous backing file

Memory allocation: size of anonymous backing file

Address space reservation: mmap

Resizing

ftruncate()

fallocate(): to avoid SIGBUS on allocation failure on first touch page fault

Does not need changes to mapping

fallocate problems

Linux only

posix_fallocate() does not work with shm fds

Anonymous backing file

memfd_create(2):

Like a regular file

modified, truncated

memory-mapped, and so on.

Unlike a regular file

lives in RAM

has a volatile backing storage

Automatically released once all the references to it are dropped

Alternative: madvise

madvise() with MADV_POPULATE and MADV_FREE

lazy in releasing memory

Linux only

freed pages can still be written

Resizing operation

Shrinking buffers

Evict all the buffers in area to be shrunk

Flush dirty buffers

Abort/delay resizing if a pinned buffer is found

Empty extra array elements

Remove entries from buffer lookup table

Compact buffer lookup table - (how?)

Shrink shared memory segments

Publish shrunk NBuffers

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

Anonymous
backing file

Unallocated
memory
blocking

address space

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

Anonymous
backing file

Unallocated
memory
blocking
address
space

Expanding shared buffers

Expand shared memory segments

Initialize elements in newly expanded memory

Expand buffer lookup table (how?)

Publish new NBuffers

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

Anonymous
backing file

Unallocated
memory
blocking
address
space

R
e
s
e
r
v
e
d

a
d
d
r
e
s
s

m
a
p

Anonymous
backing file

Unallocated
memory
blocking

address space

Synchronization

Synchronization

PMSIGNAL_SHMEM_RESIZE

Postmaster

process_pm_shmem_resize()

Remap memory
segments

Postgres child
processes

Wait for all backends to
enter resizing process

Signal PM

Remap memory
segments

Resume normal
operation

PROCSIGNAL_BARRIER_SHMEM_RESIZE

Phase 1

Evict extra buffers
(if shrinking)

Phase 2

Reinitialize shared memory data
structures

Phase 3

Phase 4

New backend: alternatives

Block any new backend

Affects HA

Let the new backend in

Enters resizing process before touching shared memory

Completes steps already completed by other backends

Continues with remaining steps with other processes

A backend exit

While backends are entering resizing operation

Ignore

In-between resizing operation

Register on_shmem_exit() call to release locks

Let others know about exit

Other backends ignore exiting backend

Failure handling: delayed backend

A backend may delay entering the resizing process

Examples: Backend with pinned buffers

bgwriter scanning buffers

Checkpointer

A backend takes time

wait forever until it is ready to participate

Abort resizing operation after waiting

Abort query in the backend after waiting

Quit/kill backend

Failure handling: Remapping failure

Remapping has failed in one backend

hard failure? Restart?

Rollback resizing?

The backend exits

Remapping failed in Postmaster

Hard failure, restart

Rollback resizing?

Trigger resizing

ALTER SYSTEM … SET + pg_reload_conf()
pg_reload_conf()

Signal PM

Postmaster Postgres child
processes

SIGHUP

Signal every child

ProcessConfigFile()

SIGHUP

assign_shared_buffers()
Pending_pm_shmem_res

ize = true;

ProcessConfigFile()

assign_shared_buffers()
Pending_pm_shmem_res

ize = true;

ProcessConfigFile()

SIGHUP

assign_shared_buffers()
Pending_pm_shmem_res

ize = true;

ALTER SYSTEM … SET + pg_reload_conf()

Pros

Existing interface

Cons

User has limited control over when to trigger buffer resizing

In case many GUCs are being changed

Failures logged to server error log

Resizing process needs some other monitoring mechanism

Retries might interrupt system

Needs user intervention, still, in case of persistent failures

SQL function or command

new SQL callable function

ALTER SYSTEM … SET - changes shared_buffers

pg_reload_conf() - reloads and marks the change as pending

pg_update_shared_buffers() - performs actual resizing

New DDL command

ALTER SYSTEM UPDATE shared_buffers

May be used shared by other such configuration changes

SQL function or command

Pros

User controls when to resize buffers

And retry in case of failures

The same function/command can be used for monitoring the progress

Failures can be reported directly to the client

The client used to trigger the operation acts as a coordinator

Extra parameters controlling the resizing operation - e.g. amount of delay, failure handling

Cons

Requires a new SQL function or non-standard command

Coordinator

Postmaster as coordinator

Natural choice when triggered by pg_reload_conf() alone

Is also the one sets up shared memory initially

Limitation: Cannot wait for locks, barriers etc.

Client backend as Coordinator

Natural choice when triggered by function/command

Can wait, hold locks etc.

Postmaster needs a special treatment for remapping its memory

Not if we use ftruncate for memory allocation

A worker backend: Coordinator

A worker backend as coordinator

Can be used with both UI options

Acts similar to a client backend

A dedicated worker for similar GUC changes

Platform dependence

System call support

Linux: solution designed using supported system calls

FreeBSD supports most of the required

NetBSD and openBSD do not have memfd_create()

Windows?

Multithreading?

Shared memory is not required

Memory mapping may still be required

Process synchronization is required

Thank you!

Resizing using memory maps

Each resizable data structure

Buffer descriptors, Buffer Blocks, Conditional variables array

Checkpoint buffers array, Buffer lookup table

Strategy Control area

Mapped into a separate address space

Allocate separate memory chunks

mmap with memory mapped backing file OR

Padded by address space reserved, not allocated, for resizing

mmap with PROT_NONE, MAP_NORESERVE)

Size of allocated space controlled by memory mapped file

Anonymous file

7f90cde00000-7f90d5126000 rw-s /memfd:main (deleted)

7f90d5126000-7f914de00000 ---p

7f914de00000-7f9175128000 rw-s /memfd:buffers (deleted)

7f9175128000-7f944de00000 ---p

7f944de00000-7f9455528000 rw-s /memfd:descriptors (deleted)

[...]

Current state

{
 {"shared_buffers", PGC_POSTMASTER, RESOURCES_MEM,
 gettext_noop("Sets the number of shared memory buffers
used by the server."),
 NULL,
 GUC_UNIT_BLOCKS
 },
 &NBuffers,
 16384, 16, INT_MAX / 2,
 NULL, NULL, NULL
},

Current state

{
 {"shared_buffers", PGC_POSTMASTER, RESOURCES_MEM,
 gettext_noop("Sets the number of shared memory buffers
used by the server."),
 NULL,
 GUC_UNIT_BLOCKS
 },
 &NBuffers,
 16384, 16, INT_MAX / 2,
 NULL, NULL, NULL
},

Is it a problem?

Li G, Zhou X, Li S, Gao B. Qtune: A query-aware database tuning system with deep reinforcement learning. Proceedings of the VLDB
Endowment. 2019 Aug 1;12(12):2118-30.

Is it a problem?

Geng J, Wang H, Yan Y. EMIT: Micro-Invasive Database Configuration Tuning. arXiv preprint arXiv:2406.00616. 2024 Jun 2.

Is it a problem?

Wang J, Trummer I, Basu D. UDO: universal database optimization using reinforcement learning. arXiv preprint arXiv:2104.01744.
2021 Apr 5.

Current state

Current state

Current state

We are not alone
MySQL 8.4
The resizing operation is performed by a background thread. When increasing
the size of the buffer pool, the resizing operation:
• Adds pages in chunks (chunk size is defined by

innodb_buffer_pool_chunk_size)
• Converts hash tables, lists, and pointers to use new addresses in memory
• Adds new pages to the free list

https://dev.mysql.com/doc/refman/8.4/en/innodb-buffer-pool-resize.html#innodb-buffer-pool-online-resize

We are not alone
MySQL 8.4
The resizing operation is performed by a background thread. When increasing
the size of the buffer pool, the resizing operation:
• Adds pages in chunks (chunk size is defined by

innodb_buffer_pool_chunk_size)
• Converts hash tables, lists, and pointers to use new addresses in memory
• Adds new pages to the free list

https://dev.mysql.com/doc/refman/8.4/en/innodb-buffer-pool-resize.html#innodb-buffer-pool-online-resize

Simply copy everything around?

In search for a better solution
void *mmap(void addr, size_t length,
 int prot, int flags, int fd,
 off_t offset);
void *mremap(void old_address,
 size_t old_size,
 size_t new_size,
 int flags);
MAP_FIXED
 Don't interpret addr as a hint: place
 the mapping at exactly that address.

Current state

Desired state

API change

void *
ShmemInitStructInSegment(
 const char *name, Size size,
 bool *foundPtr, int shmem_segment)

Reserved address space

To keep shared memory layout from unrelated changes the “gaps” have to be
protected with an initial mmap:

● PROT_NONE
● MAP_NORESERVE

Coordination between processes

PostgreSQL currently does not have a needed mechanism to make every process
wait for each other. To implement this following synchronization components are
used:

● ProcSignalBarrier (Emit/Wait)
● Dynamic IPC Barrier
● ShmemControl

Important scenarios to tackle:

● Normal – backend comes through all coordination phases
● A new backend is spawned – it has to wait until resizing is done
● A backend is blocked and not responding before or after receiving

ProcSignalBarrier – resizing has to wait for such backends.
● Backends receive ProcSignalBarrier in disjoint groups – resizing has to wait

for all groups.

Coordination between processes

Failure handling

● A backend is blocked, wait forever until it is unblocked?
● A backend is blocked, timed waiting and abort?
● Resizing has failed in one backend, hard failure?
● Resizing has failed in one backend, try to rollback?

Huge pages
if (is_vm_hugetlb_page(vma)) {
 /*
 * Don't allow remap expansion,
 * because the underlying hugetlb
 * reservation is not yet capable
 * to handle split reservation.
 */
 if (new_len > old_len)
 goto out;
}

